
i
i

i
i

i
i

i
i

Malaysian Journal of Mathematical Sciences 10(S) February: 219–226 (2016)
Special Issue: The 3rd International Conference on Mathematical Applications in
Engineering 2014 (ICMAE’14)

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

Soliton Scattering on the External Potential in
Weakly Nonlocal Nonlinear Media

Umarov, B.A.∗1 and Busul Aklan, N. A.2

1Deparment of Physics, Kulliyyah of Science, International
Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

2Department of Computational and Theoretical Sciences,
Kulliyyah of Science, International Islamic University Malaysia,

25200, Kuantan, Pahang, Malaysia

E-mail: bakhram@iium.edu.my

ABSTRACT

The Nonlinear Schrödinger Equation (NLSE) is one of the universal
mathematical models and it arises in a such diverse areas as plasma
physics, condensed matter physics, Bose - Einstein condensates, nonlin-
ear optics, etc. In this work the scattering of the soliton of the generalized
NLSE on the localized external potential has been studied, taking into
account the weak nonlocality of the media. We have applied the approx-
imate analytical method, namely the variational method to derive the
equations for soliton parameters evolution during the scattering process.
The validity of approximations were checked by direct numerical simula-
tions with soliton initially located far from potential. It was shown that
depending on initial velocity of the soliton, the soliton may be reflected
by potential or transmitted through it. The critical values of the velocity
separating these two scenarios have been identified.

Keywords: Soliton, nonlinear equations, scattering, variational meth-
ods.
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1. Introduction

The investigation of nonlinear wave processes become one of the most in-
teresting problems of the modern physics and mathematics, with numerous
applications in different areas of the physics and engineering (Scott, 2005);
(Remoissenet, 2003). The localized waves propagating in nonlinear media, or
solitons are the objects attracting the attention of the researches, and have
been theoretically and experimentally studied first in the context of water
waves (Witham, 1974). Then it become clear that soliton is the universal
concept and it has been discovered in the solid state physics , nonlinear optics,
Bose-Einstein condensates, plasma physics, etc (Bullough and Caudrey, 1980);
(Agrawal, 1995); (Pitaevski and Stringari, 2003). The theoretical studies of
solitons based on few models, reflecting the basic principles of the physics of
nonlinear waves, and also on the generalizations of these models, expending the
limits of their applicability. One of this models is the nonlinear Schrödinger
equation (NLSE) (Ablowitz et al., 2004). This is the partial differential equa-
tion, which is the integrable by Inverse Scattering Transform (IST) method
and has multisoliton solutions. Solitons of NLSE preserve their identity while
propagating and interacting with each other. The NLSE describes propagation
of the wave packets in weakly nonlinear and weakly dispersive medium. For
applications it is important to be able to control solitons, which can be achieved
by interaction of soliton with another soliton or excitation of the system. Also
the soliton can be managed using external perturbations, but in this case it
is necessary to modify the model and include additional terms. In this work
we study the interaction of the soliton of the generalized NLSE, taking into
account a weak nonlocality of nonlinearity, with the localized linear potential.

The paper is organized as follows. In Sec.2 the mathematical model is
formulated and basic equations are derived. Sec.3 is devoted to numerical sim-
ulations of the variational equations and comparison of the results with direct
solution of the original weakly nonlocal NLSE. Finally, in Sec.4 we summarize
our findings, and discuss some interesting directions for future studies.

2. The model and main equations

We begin with the discussion of a wave propagation in nonlinear nonlocal
weakly dispersive media , and assume that nonlinearity is of the Kerr type.
Then the following generalized NLSE equation can be written as a mathemat-
ical model of the above mentioned system (Krolikowski and Bang, 2000).
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iψt +
1

2
ψxx + ∆n(|ψ|2)ψ + V (x)ψ = 0, (1)

where ψ(x, t) is the field function and V (x) is the external potential. In the
following we consider the narrow potential which can be modeled by delta
function V (x) = U0δ(x), and U0 is the amplitude of the potential. The function
∆n =

∫∞
−∞R(x−x′)|ψ|2dx′ is the model of nonlocal nonlinearity and R(x) is the

response function of nonlocal medium. In case of the R(x) = δ(x) the response
becomes singular, and the Eq.(1) will be reduced to NLSE equation. When the
nonlocality is weak, i.e. the response function is narrow in comparison with the
localized wave width Eq.(1) can be further reduced to the following generalized
NLSE (Krolikowski and Bang, 2000)

iψt +
1

2
ψxx + (|ψ|2 + γ∂2x(|ψ|2)ψ + V (x)ψ = 0, (2)

where γ = 1
2

∫∞
−∞R(x)x2dx and it is assumed that the response function is

normalized
∫∞
−∞R(x)dx = 1.

When V (x) = 0 Eq.(2) possesses bright stationary soliton solution

ψ(x, t) = u(x) exp (iΓt), (3)

and u(x) can be found analytically in implicit form (Krolikowski and Bang,
2000)

± x =
1

u0
tanh−1

(
σ

u0

)
+
√

4γ tan−1 (
√

4γσ), (4)

where u0 is the maximum of u(x) and σ2 = (ρ0−ρ)/(1+4γρ), ρ = u2, ρ0 = u20.

It is easy to verify that the governing Eq. (2) can be obtained from the
following Lagrangian density (Bezuhanov et al., 2008)

L =
i

2
(ψψ∗t − ψ∗ψt) +

1

2
|ψx|2 + V (x)|ψ|2 − g

2
|ψ|4 +

γ

2
(∂x|ψ|2)2, (5)

by means of the Euler-Lagrange equation.

Now one can apply the variational optimization procedure (Anderson, 1983);
(Malomed, 2002) to get the approximate system of ordinary differential equa-
tions for soliton parameters. The trial function which approximate the solution
of the Eq. (2) we choose from the following considerations. When one neglects
the nonlocality and external potential, so that V (x) = 0 and γ = 0, Eq. (2)
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will be reduced to the NLSE with well known soliton solution. So, when the
external potential and nonlocality are weak, they can be considered as a per-
turbation, and the shape of solution in this case will remain the same as soliton
of NLSE, but the parameters, which are constants in exact solution on NLSE,
will be changing according to the variational evolution equations, which will be
derived from averaged Lagrangian. Then spatial integration of the Lagrangian
density L =

∫∞
−∞ Ldx using the trial function

ψ(x, t) = Asech

(
x− ξ
a

)
eib(x−ξ)

2+iv(x−ξ)+iϕ, (6)

gives rise to following averaged/effective Lagrangian

L = N

[
π2

12
a2bt +

π2

6
a2b2 − 1

2
ξ2t + ϕt +

1

6a2
− N

6a
− U0

2a
sech2

(
ξ

a

)
+

2γN

a3

]
.

(7)
The norm of the wave functionN =

∫∞
−∞ |ψ|2dx = 2A2a is a conserved quantity.

Evolution equations for variational parameters can be derived from the
Euler-Lagrange equations d/dt(∂L/∂q̇i) − ∂L/∂qi = 0, where qi are time de-
pendent collective coordinates a, ξ, b, ϕ. The equation for the phase ϕ reduces
to dN/dt = 0 and illustrates the conservation of the norm of the wave function.
It is decoupled from other equations and can be dropped in further analysis.
What remains is a set of coupled equations for the width and center-of-mass
position of the soliton

att =
4

π2a3
− 2N

π2a2
+

6U0

π2a2
sech2

(
ξ

a

)[
1− 2ξ

a
tanh

(
ξ

a

)]
+

24γN

5π2a4
, (8)

ξtt = −U0

a2
sech2

(
ξ

a

)
tanh

(
ξ

a

)
. (9)

When external potential is absent, i.e. U0 = 0, Eqs.(8) and (9) decouple,
and from Eq.(8) one can find the approximate width of the stationary(att = 0)
soliton solution of weakly nonlocal NLSE as =

√
12γ/5 + 1/A2. Perturba-

tions may generate oscillations of the width around this stationary point. The
velocity ξt in this case is the constant free parameter. Inclusion of delta poten-
tial to the system, couples the time evolution of position of the center of the
soliton with the evolution of its width. Obviously when soliton is located far
from inhomogeneity, it does not affected by it, and the soliton’s parameters are
constant. Some qualitative results about solitons evolution we can get, if we
neglect the effect of potential to the width of soliton. Then the equation (9)
describes the scattering of effective classical particle on the localized barrier.

ξtt = −U0

a2s
sech2

(
ξ

as

)
tanh

(
ξ

as

)
=
dVP (ξ)

dξ
. (10)
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This equation can be integrated once and reduced to the following equation

ξt =
√

2VP (ξ) , (11)

where VP (ξ) = (U0/2as)sech2(ξ/as) is the effective potential representing the
influence of the original localized delta potential to the solitons velocity. From
the Eq. (11) it is clear that the effective particle can be transmitted through
potential or reflected from it depending on whether the velocity above or below
of critical value vc =

√
U0/as.

3. Numerical simulations

The results obtained above are approximate, and based on some assump-
tions, so they should be compared with the results of the direct numerical
solutions of the governing equations. Numerical solution of the generalized
NLSE (2) has been performed by the split-step fast Fourier transform method
(Agrawal, 1995) using 2048 Fourier modes within the integration domain of
length L ∈ [−20÷ 20], and the time step was δt = 0.005. The dynamical equa-
tions of the variational approximation (8)-(9) are solved using the Runge-Kutta
procedure of 4-th order (Press et al., 1996). Soliton ψ(x) is set in motion with
some velocity v towards the potential barrier V (x) initially located at some
distance from it. Let us first discuss the results of numerical solutions of the
system of ordinary differential equations (8)-(9), describing the approximate
time evolution of the width and position of the center of the soliton. Initial
width is chosen equal to a(0) = as and A = 1.414241. As it was discussed be-
fore, the soliton behaves like a classical particle with internal degree of freedom
associated with the width of soliton. Depending on the amplitude of potential,
soliton may be transmitted or reflected from the potential, and when soliton
close to the potential, not only its velocity, but also its width will be affected
by perturbation. The critical parameters of the system separating transmis-
sion from reflection quite well described by the formula, obtained above from
simplified ’effective particle’ picture of the soliton scattering on the localized
weak potential. The examples of the results of numerical solution of the Eqs.
(8) & (9) shown in the Figs.(1) & (2)

Also, the examples of results of numerical experiment with the governing
generalized NLSE (2), on the same range of parameters and the initial condition
chosen in the form of exact soliton from Eq.(3) with u0 = A = 1.414241, and
Γ = 1 are shown on the Fig.(3), which confirm qualitatively that soliton behaves
like a particle and can be either transmitted or reflected on the potential wall.
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Figure 1: Evolution of the width (left panel) and center of soliton position (right panel) of a soliton
in the presence of a delta potential barrier V (x) = U0δ(x+3), according to ODE systems: (8)-(9).
Parameters: U0 = 0.07, γ = 0.2 , a = 0.98994, v = 0.3, ξ0 = −12.5.
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Figure 2: Evolution of the width (left panel) and center of soliton position (right panel) of a soliton
in the presence of a delta potential barrier V (x) = U0δ(x+3), according to ODE systems: (8)-(9).
Parameters: U0 = 0.1, γ = 0.2 , a = 0.98994, v = 0.3, ξ0 = −12.5.

4. Conclusion

We have developed a variational approximation to describe the scattering
of solitons of weekly nonlocal NLSE by external delta potential. Dynamical
equations for the parameters of the soliton have the form of ordinary differential
equations. Quite good agreement between the results of variational equations
and direct numerical solution of the original generalized NLS equation is found
for soliton scattering on week potential barrier, when the particle picture can
be effectively applied. The future planned research includes the consideration
of soliton interaction with localized potential walls as well as potential wells of
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Figure 3: Evolution of the |ψ(x, t)| with soliton initial conditions and V (x) = U0δ(x+3), according
to the Eq.(2). In the left panel the parameters are the same as in Fig.(1), and in the right panel
the parameters are the same as in Fig(2).

the different shapes. The results can be useful in development of new methods
aimed at probing the external potentials/defects by scattering solitons on them.
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